CARIA.2.0
Precedent repo CARIA : Ajout de nouveau modele. Travail sur multiple ia. ...
This commit is contained in:
@@ -0,0 +1,78 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import time
|
||||
|
||||
# Load Yolo
|
||||
net = cv2.dnn.readNet("server-ia/data/modeles/yolov3-tiny/yolov3-tiny.weights", "server-ia/data/modeles/yolov3-tiny/yolov3-tiny.cfg")
|
||||
classes = []
|
||||
with open("server-ia/data/modeles/yolov3-tiny/coco.names", "r") as f:
|
||||
classes = [line.strip() for line in f.readlines()]
|
||||
layer_names = net.getLayerNames()
|
||||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
||||
colors = np.random.uniform(0, 255, size=(len(classes), 3))
|
||||
|
||||
# Loading image
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
font = cv2.FONT_HERSHEY_PLAIN
|
||||
starting_time = time.time()
|
||||
frame_id = 0
|
||||
while True:
|
||||
_, frame = cap.read()
|
||||
frame_id += 1
|
||||
|
||||
height, width, channels = frame.shape
|
||||
|
||||
# Detecting objects
|
||||
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
|
||||
|
||||
net.setInput(blob)
|
||||
outs = net.forward(output_layers)
|
||||
|
||||
# Showing informations on the screen
|
||||
class_ids = []
|
||||
confidences = []
|
||||
boxes = []
|
||||
for out in outs:
|
||||
for detection in out:
|
||||
scores = detection[5:]
|
||||
class_id = np.argmax(scores)
|
||||
confidence = scores[class_id]
|
||||
if confidence > 0.5:
|
||||
# Object detected
|
||||
center_x = int(detection[0] * width)
|
||||
center_y = int(detection[1] * height)
|
||||
w = int(detection[2] * width)
|
||||
h = int(detection[3] * height)
|
||||
|
||||
# Rectangle coordinates
|
||||
x = int(center_x - w / 2)
|
||||
y = int(center_y - h / 2)
|
||||
|
||||
boxes.append([x, y, w, h])
|
||||
confidences.append(float(confidence))
|
||||
class_ids.append(class_id)
|
||||
|
||||
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.3)
|
||||
|
||||
for i in range(len(boxes)):
|
||||
if i in indexes:
|
||||
x, y, w, h = boxes[i]
|
||||
label = str(classes[class_ids[i]])
|
||||
confidence = confidences[i]
|
||||
color = colors[class_ids[i]]
|
||||
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
|
||||
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), font, 3, color, 3)
|
||||
|
||||
|
||||
|
||||
elapsed_time = time.time() - starting_time
|
||||
fps = frame_id / elapsed_time
|
||||
cv2.putText(frame, "FPS: " + str(round(fps, 2)), (10, 50), font, 4, (0, 0, 0), 3)
|
||||
cv2.imshow("Image", frame)
|
||||
key = cv2.waitKey(1)
|
||||
if key == 27:
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
Reference in New Issue
Block a user