CARIA.2.0
Precedent repo CARIA : Ajout de nouveau modele. Travail sur multiple ia. ...
This commit is contained in:
92
server-ia/Identification_Yolov3/yolo_opencv_video.py
Normal file
92
server-ia/Identification_Yolov3/yolo_opencv_video.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import cv2
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
ap = argparse.ArgumentParser()
|
||||
ap.add_argument('-v', '--video', required=True,
|
||||
help='path to input video file or "cam" for webcam')
|
||||
ap.add_argument('-c', '--config', required=True,
|
||||
help='path to yolo config file')
|
||||
ap.add_argument('-w', '--weights', required=True,
|
||||
help='path to yolo pre-trained weights')
|
||||
ap.add_argument('-cl', '--classes', required=True,
|
||||
help='path to text file containing class names')
|
||||
args = ap.parse_args()
|
||||
|
||||
def get_output_layers(net):
|
||||
layer_names = net.getLayerNames()
|
||||
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
||||
return output_layers
|
||||
|
||||
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
|
||||
label = str(classes[class_id])
|
||||
color = COLORS[class_id]
|
||||
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
|
||||
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
||||
|
||||
classes = None
|
||||
with open(args.classes, 'r') as f:
|
||||
classes = [line.strip() for line in f.readlines()]
|
||||
|
||||
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
|
||||
|
||||
net = cv2.dnn.readNet(args.weights, args.config)
|
||||
|
||||
# If webcam is chosen, use camera capture
|
||||
if args.video == 'cam':
|
||||
cap = cv2.VideoCapture(0)
|
||||
else:
|
||||
cap = cv2.VideoCapture(args.video)
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
if not ret:
|
||||
break
|
||||
|
||||
Width = frame.shape[1]
|
||||
Height = frame.shape[0]
|
||||
scale = 0.00392
|
||||
|
||||
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False)
|
||||
net.setInput(blob)
|
||||
outs = net.forward(get_output_layers(net))
|
||||
|
||||
class_ids = []
|
||||
confidences = []
|
||||
boxes = []
|
||||
conf_threshold = 0.5
|
||||
nms_threshold = 0.4
|
||||
|
||||
for out in outs:
|
||||
for detection in out:
|
||||
scores = detection[5:]
|
||||
class_id = np.argmax(scores)
|
||||
confidence = scores[class_id]
|
||||
if confidence > 0.5:
|
||||
center_x = int(detection[0] * Width)
|
||||
center_y = int(detection[1] * Height)
|
||||
w = int(detection[2] * Width)
|
||||
h = int(detection[3] * Height)
|
||||
x = center_x - w / 2
|
||||
y = center_y - h / 2
|
||||
class_ids.append(class_id)
|
||||
confidences.append(float(confidence))
|
||||
boxes.append([x, y, w, h])
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
|
||||
|
||||
for i in indices:
|
||||
i = i[0]
|
||||
box = boxes[i]
|
||||
x = box[0]
|
||||
y = box[1]
|
||||
w = box[2]
|
||||
h = box[3]
|
||||
draw_prediction(frame, class_ids[i], confidences[i], round(x), round(y), round(x + w), round(y + h))
|
||||
|
||||
cv2.imshow("object detection", frame)
|
||||
if cv2.waitKey(1) & 0xFF == ord('q'):
|
||||
break
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
||||
Reference in New Issue
Block a user