CARIA.2.1

Update for the final presentation
huge change with previous version
This commit is contained in:
ccunatbrule
2024-09-03 12:12:47 +02:00
parent 241121a7d1
commit 75e144ace5
72 changed files with 355347 additions and 1009 deletions

View File

@@ -0,0 +1,92 @@
import cv2
import argparse
import numpy as np
ap = argparse.ArgumentParser()
ap.add_argument('-v', '--video', required=True,
help='path to input video file or "cam" for webcam')
ap.add_argument('-c', '--config', required=True,
help='path to yolo config file')
ap.add_argument('-w', '--weights', required=True,
help='path to yolo pre-trained weights')
ap.add_argument('-cl', '--classes', required=True,
help='path to text file containing class names')
args = ap.parse_args()
def get_output_layers(net):
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
return output_layers
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
label = str(classes[class_id])
color = COLORS[class_id]
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
classes = None
with open(args.classes, 'r') as f:
classes = [line.strip() for line in f.readlines()]
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
net = cv2.dnn.readNet(args.weights, args.config)
# If webcam is chosen, use camera capture
if args.video == 'cam':
cap = cv2.VideoCapture(0)
else:
cap = cv2.VideoCapture(args.video)
while True:
ret, frame = cap.read()
if not ret:
break
Width = frame.shape[1]
Height = frame.shape[0]
scale = 0.00392
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(get_output_layers(net))
class_ids = []
confidences = []
boxes = []
conf_threshold = 0.5
nms_threshold = 0.4
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * Width)
center_y = int(detection[1] * Height)
w = int(detection[2] * Width)
h = int(detection[3] * Height)
x = center_x - w / 2
y = center_y - h / 2
class_ids.append(class_id)
confidences.append(float(confidence))
boxes.append([x, y, w, h])
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
for i in indices:
i = i[0]
box = boxes[i]
x = box[0]
y = box[1]
w = box[2]
h = box[3]
draw_prediction(frame, class_ids[i], confidences[i], round(x), round(y), round(x + w), round(y + h))
cv2.imshow("object detection", frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()