#!/usr/bin/env python import cv2 import pickle import numpy as np min_size=50 face_cascade= cv2.CascadeClassifier("server-ia/data/haarcascades/haarcascade_frontalface_alt2.xml") recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.read("server-ia/data/modeles/camera_identification_user/trainner.yml") id_image=0 color_info=(255, 255, 255) color_ko=(0, 0, 255) color_ok=(0, 255, 0) url = "http://192.168.52.194:8081" with open("server-ia/data/modeles/camera_identification_user/labels.pickle", "rb") as f: og_labels=pickle.load(f) labels={v:k for k, v in og_labels.items()} cap=cv2.VideoCapture(0) while True: ret, frame=cap.read() tickmark=cv2.getTickCount() gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces=face_cascade.detectMultiScale(gray, scaleFactor=1.2,minNeighbors=4, minSize=(min_size, min_size)) for (x, y, w, h) in faces: roi_gray=gray[y:y+h, x:x+w] #id_, conf=recognizer.predict(cv2.resize(roi_gray, (min_size, min_size))) id_, conf=recognizer.predict(roi_gray) if conf<=95: color=color_ok name=labels[id_] else: color=color_ko name="Inconnu" label=name+" "+'{:5.2f}'.format(conf) cv2.putText(frame, label, (x, y-10), cv2.FONT_HERSHEY_DUPLEX, 1, color_info, 1, cv2.LINE_AA) cv2.rectangle(frame, (x, y), (x+w, y+h), color, 2) fps=cv2.getTickFrequency()/(cv2.getTickCount()-tickmark) cv2.putText(frame, "FPS: {:05.2f}".format(fps), (10, 30), cv2.FONT_HERSHEY_PLAIN, 2, color_info, 2) cv2.imshow('L42Project', frame) key=cv2.waitKey(1)&0xFF if key==ord('q'): break if key==ord('a'): for cpt in range(100): ret, frame=cap.read() cv2.destroyAllWindows() print("Fin")