CARIA.2.0
Precedent repo CARIA: Trainer pour CARIA-INTELLIGENT modeles
This commit is contained in:
@@ -0,0 +1,208 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers, models
|
||||
import numpy as np
|
||||
from sklearn.utils import shuffle
|
||||
from sklearn.model_selection import train_test_split
|
||||
import cv2
|
||||
import os
|
||||
import time
|
||||
import dataset
|
||||
|
||||
size=42
|
||||
dir_images_panneaux="server-trainer/images/road_sign_speed_trainers/panneaux"
|
||||
dir_images_autres_panneaux="server-trainer/images/road_sign_speed_trainers/autres_panneaux"
|
||||
dir_images_genere_sans_panneaux="server-trainer/images/road_sign_speed_trainers/genere_sans_panneaux"
|
||||
|
||||
batch_size=128
|
||||
nbr_entrainement=1 #20
|
||||
|
||||
def panneau_model(nbr_classes):
|
||||
model=tf.keras.Sequential()
|
||||
|
||||
model.add(layers.Input(shape=(size, size, 3), dtype='float32'))
|
||||
|
||||
model.add(layers.Conv2D(128, 3, strides=1))
|
||||
model.add(layers.Dropout(0.2))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Activation('relu'))
|
||||
|
||||
model.add(layers.Conv2D(128, 3, strides=1))
|
||||
model.add(layers.Dropout(0.2))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Activation('relu'))
|
||||
|
||||
model.add(layers.MaxPool2D(pool_size=2, strides=2))
|
||||
|
||||
model.add(layers.Conv2D(256, 3, strides=1))
|
||||
model.add(layers.Dropout(0.3))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Activation('relu'))
|
||||
|
||||
model.add(layers.Conv2D(256, 3, strides=1))
|
||||
model.add(layers.Dropout(0.4))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Activation('relu'))
|
||||
|
||||
model.add(layers.MaxPool2D(pool_size=2, strides=2))
|
||||
|
||||
model.add(layers.Flatten())
|
||||
model.add(layers.Dense(512, activation='relu'))
|
||||
model.add(layers.Dropout(0.5))
|
||||
model.add(layers.BatchNormalization())
|
||||
model.add(layers.Dense(nbr_classes, activation='sigmoid'))
|
||||
|
||||
return model
|
||||
|
||||
def lire_images_panneaux(dir_images_panneaux, size=None):
|
||||
tab_panneau=[]
|
||||
tab_image_panneau=[]
|
||||
|
||||
if not os.path.exists(dir_images_panneaux):
|
||||
quit("Le repertoire d'image n'existe pas: {}".format(dir_images_panneaux))
|
||||
|
||||
files=os.listdir(dir_images_panneaux)
|
||||
if files is None:
|
||||
quit("Le repertoire d'image est vide: {}".format(dir_images_panneaux))
|
||||
|
||||
for file in sorted(files):
|
||||
if file.endswith("png"):
|
||||
tab_panneau.append(file.split(".")[0])
|
||||
image=cv2.imread(dir_images_panneaux+"/"+file)
|
||||
if size is not None:
|
||||
image=cv2.resize(image, (size, size), cv2.INTER_LANCZOS4)
|
||||
tab_image_panneau.append(image)
|
||||
|
||||
return tab_panneau, tab_image_panneau
|
||||
|
||||
tab_panneau, tab_image_panneau=lire_images_panneaux(dir_images_panneaux, size)
|
||||
|
||||
tab_images=np.array([]).reshape(0, size, size, 3)
|
||||
tab_labels=np.array([]).reshape(0, len(tab_image_panneau))
|
||||
|
||||
id=0
|
||||
for image in tab_image_panneau:
|
||||
lot = []
|
||||
for _ in range(120):
|
||||
lot.append(dataset.modif_img(image))
|
||||
lot = np.array(lot)
|
||||
tab_images=np.concatenate((tab_images, lot))
|
||||
tab_labels=np.concatenate([tab_labels, np.repeat([np.eye(len(tab_image_panneau))[id]], len(lot), axis=0)])
|
||||
id += 1
|
||||
|
||||
|
||||
files=os.listdir(dir_images_autres_panneaux)
|
||||
if files is None:
|
||||
quit("Le repertoire d'image est vide:".format(dir_images_autres_panneaux))
|
||||
|
||||
nbr=0
|
||||
for file in files:
|
||||
lot = []
|
||||
if file.endswith("png"):
|
||||
path=os.path.join(dir_images_autres_panneaux, file)
|
||||
image=cv2.resize(cv2.imread(path), (size, size), cv2.INTER_LANCZOS4)
|
||||
for _ in range(700):
|
||||
lot.append(dataset.modif_img(image))
|
||||
lot = np.array(lot)
|
||||
tab_images=np.concatenate([tab_images, lot])
|
||||
nbr+=len(lot)
|
||||
|
||||
tab_labels=np.concatenate([tab_labels, np.repeat([np.full(len(tab_image_panneau), 0)], nbr, axis=0)])
|
||||
|
||||
nbr_np=int(len(tab_images)/2)
|
||||
|
||||
id=1
|
||||
nbr=0
|
||||
tab=[]
|
||||
for cpt in range(nbr_np):
|
||||
file=dir_images_genere_sans_panneaux+"/{:d}.png".format(id)
|
||||
if not os.path.isfile(file):
|
||||
break
|
||||
image=cv2.resize(cv2.imread(file), (size, size))
|
||||
tab.append(image)
|
||||
id+=1
|
||||
nbr+=1
|
||||
|
||||
tab_images=np.concatenate([tab_images, tab])
|
||||
tab_labels=np.concatenate([tab_labels, np.repeat([np.full(len(tab_image_panneau), 0)], nbr, axis=0)])
|
||||
|
||||
tab_panneau=np.array(tab_panneau)
|
||||
tab_images=np.array(tab_images, dtype=np.float32)/255
|
||||
tab_labels=np.array(tab_labels, dtype=np.float32) #.reshape([-1, 1])
|
||||
|
||||
train_images, test_images, train_labels, test_labels=train_test_split(tab_images, tab_labels, test_size=0.10)
|
||||
|
||||
train_ds=tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(batch_size)
|
||||
test_ds=tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(batch_size)
|
||||
|
||||
print("train_images", len(train_images))
|
||||
print("test_images", len(test_images))
|
||||
|
||||
@tf.function
|
||||
def train_step(images, labels):
|
||||
with tf.GradientTape() as tape:
|
||||
predictions=model_panneau(images)
|
||||
loss=my_loss(labels, predictions)
|
||||
gradients=tape.gradient(loss, model_panneau.trainable_variables)
|
||||
optimizer.apply_gradients(zip(gradients, model_panneau.trainable_variables))
|
||||
train_loss(loss)
|
||||
train_accuracy(labels, predictions)
|
||||
|
||||
def train(train_ds, nbr_entrainement):
|
||||
for entrainement in range(nbr_entrainement):
|
||||
start=time.time()
|
||||
for images, labels in train_ds:
|
||||
train_step(images, labels)
|
||||
message='Entrainement {:04d}: loss: {:6.4f}, accuracy: {:7.4f}%, temps: {:7.4f}'
|
||||
print(message.format(entrainement+1,
|
||||
train_loss.result(),
|
||||
train_accuracy.result()*100,
|
||||
time.time()-start))
|
||||
train_loss.reset_states()
|
||||
train_accuracy.reset_states()
|
||||
test(test_ds)
|
||||
|
||||
def my_loss(labels, preds):
|
||||
labels_reshape=tf.reshape(labels, (-1, 1))
|
||||
preds_reshape=tf.reshape(preds, (-1, 1))
|
||||
result=loss_object(labels_reshape, preds_reshape)
|
||||
return result
|
||||
|
||||
def test(test_ds):
|
||||
start=time.time()
|
||||
for test_images, test_labels in test_ds:
|
||||
predictions=model_panneau(test_images)
|
||||
t_loss=my_loss(test_labels, predictions)
|
||||
test_loss(t_loss)
|
||||
test_accuracy(test_labels, predictions)
|
||||
message=' >>> Test: loss: {:6.4f}, accuracy: {:7.4f}%, temps: {:7.4f}'
|
||||
print(message.format(test_loss.result(),
|
||||
test_accuracy.result()*100,
|
||||
time.time()-start))
|
||||
test_loss.reset_states()
|
||||
test_accuracy.reset_states()
|
||||
|
||||
optimizer=tf.keras.optimizers.Adam()
|
||||
loss_object=tf.keras.losses.BinaryCrossentropy()
|
||||
train_loss=tf.keras.metrics.Mean()
|
||||
train_accuracy=tf.keras.metrics.BinaryAccuracy()
|
||||
test_loss=tf.keras.metrics.Mean()
|
||||
test_accuracy=tf.keras.metrics.BinaryAccuracy()
|
||||
model_panneau=panneau_model(len(tab_panneau))
|
||||
checkpoint=tf.train.Checkpoint(model_panneau=model_panneau)
|
||||
|
||||
print("Entrainement")
|
||||
train(train_ds, nbr_entrainement)
|
||||
checkpoint.save(file_prefix="server-ia/data/modeles/road_sign_speed_trainers/modele_panneau")
|
||||
|
||||
quit()
|
||||
|
||||
for i in range(len(test_images)):
|
||||
prediction=model_panneau(np.array([test_images[i]]))
|
||||
print("prediction", prediction[0])
|
||||
if np.sum(prediction[0])<0.6:
|
||||
print("Ce n'est pas un panneau")
|
||||
else:
|
||||
print("C'est un panneau:", tab_panneau[np.argmax(prediction[0])])
|
||||
cv2.imshow("image", test_images[i])
|
||||
if cv2.waitKey()&0xFF==ord('q'):
|
||||
break
|
||||
99
server-trainer/RoadSigns-ModelTraining_MobileNetV2.py
Normal file
99
server-trainer/RoadSigns-ModelTraining_MobileNetV2.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import os
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
from tensorflow.keras.applications import MobileNetV2
|
||||
from tensorflow.keras.layers import AveragePooling2D, Dropout, Flatten, Dense, Input
|
||||
from tensorflow.keras.models import Model
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.metrics import classification_report
|
||||
from imutils import paths
|
||||
import numpy as np
|
||||
|
||||
# Définir les chemins des données d'entraînement et de validation
|
||||
train_data_dir = "server-trainer/images/road_sign_trainers/train_speed"
|
||||
valid_data_dir = "server-trainer/images/road_sign_trainers/test_speed"
|
||||
|
||||
# Initialiser les hyperparamètres
|
||||
INIT_LR = 1e-4
|
||||
EPOCHS = 1
|
||||
BS = 32
|
||||
|
||||
# Charger et prétraiter les images
|
||||
train_datagen = ImageDataGenerator(
|
||||
rescale=1.0 / 255,
|
||||
rotation_range=20,
|
||||
zoom_range=0.15,
|
||||
width_shift_range=0.2,
|
||||
height_shift_range=0.2,
|
||||
shear_range=0.15,
|
||||
horizontal_flip=True,
|
||||
fill_mode="nearest"
|
||||
)
|
||||
|
||||
valid_datagen = ImageDataGenerator(rescale=1.0 / 255)
|
||||
|
||||
train_generator = train_datagen.flow_from_directory(
|
||||
train_data_dir,
|
||||
target_size=(224, 224),
|
||||
batch_size=BS,
|
||||
class_mode='categorical'
|
||||
)
|
||||
|
||||
valid_generator = valid_datagen.flow_from_directory(
|
||||
valid_data_dir,
|
||||
target_size=(224, 224),
|
||||
batch_size=BS,
|
||||
class_mode='categorical'
|
||||
)
|
||||
|
||||
# Générer le fichier class_names.txt
|
||||
class_names_file = os.path.join("server-ia/data/modeles/RoadSign", "class_names.txt")
|
||||
with open(class_names_file, "w") as f:
|
||||
# Utiliser le générateur class_indices pour récupérer les noms de classe et les écrire dans le fichier
|
||||
for class_name, class_index in train_generator.class_indices.items():
|
||||
f.write(f"{class_name}\n")
|
||||
|
||||
# Charger le modèle pré-entraîné MobileNetV2 sans la couche supérieure
|
||||
base_model = MobileNetV2(
|
||||
weights="imagenet",
|
||||
include_top=False,
|
||||
input_tensor=Input(shape=(224, 224, 3))
|
||||
)
|
||||
|
||||
# Construire le modèle de tête qui sera placé au-dessus du modèle de base
|
||||
head_model = base_model.output
|
||||
head_model = AveragePooling2D(pool_size=(7, 7))(head_model)
|
||||
head_model = Flatten(name="flatten")(head_model)
|
||||
head_model = Dense(128, activation="relu")(head_model)
|
||||
head_model = Dropout(0.5)(head_model)
|
||||
head_model = Dense(len(train_generator.class_indices), activation="softmax")(head_model)
|
||||
|
||||
# Combiner le modèle de base avec le modèle de tête
|
||||
model = Model(inputs=base_model.input, outputs=head_model)
|
||||
|
||||
# Geler les couches du modèle de base
|
||||
for layer in base_model.layers:
|
||||
layer.trainable = False
|
||||
|
||||
# Compiler le modèle
|
||||
opt = Adam(learning_rate=INIT_LR)
|
||||
model.compile(loss="categorical_crossentropy", optimizer=opt, metrics=["accuracy"])
|
||||
|
||||
# Entraîner le modèle
|
||||
history = model.fit(
|
||||
train_generator,
|
||||
steps_per_epoch=len(train_generator),
|
||||
validation_data=valid_generator,
|
||||
validation_steps=len(valid_generator),
|
||||
epochs=EPOCHS
|
||||
)
|
||||
|
||||
# Sauvegarder le modèle
|
||||
model.save("server-ia/data/modeles/RoadSign/modele_signaux_routiers.h5")
|
||||
|
||||
# Évaluer le modèle
|
||||
print("[INFO] Évaluation du modèle...")
|
||||
predictions = model.predict(valid_generator, steps=len(valid_generator), verbose=1)
|
||||
predictions = np.argmax(predictions, axis=1)
|
||||
print(classification_report(valid_generator.classes, predictions, target_names=valid_generator.class_indices.keys()))
|
||||
31
server-trainer/RoadSigns-ModelTraining_Yolovv3.py
Normal file
31
server-trainer/RoadSigns-ModelTraining_Yolovv3.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import os
|
||||
|
||||
# Assurez-vous d'être dans le répertoire Darknet
|
||||
os.chdir("chemin/vers/votre/darknet")
|
||||
|
||||
# Entraînement du modèle YOLOv3 pour les panneaux de signalisation routière
|
||||
# Utilisation du CPU uniquement
|
||||
|
||||
# Chemin vers les données d'entraînement et de validation
|
||||
train_data = "server-trainer/images/road_sign_trainers/train_speed"
|
||||
valid_data = "server-trainer/images/road_sign_trainers/test_speed"
|
||||
|
||||
# Paramètres d'entraînement
|
||||
batch_size = 64
|
||||
subdivisions = 16
|
||||
num_epochs = 1000
|
||||
|
||||
# Commande d'entraînement
|
||||
train_command = f"./darknet detector train data/obj.data cfg/yolov3_custom_train.cfg yolov3.weights -map -dont_show -gpus 0"
|
||||
|
||||
# Boucle d'entraînement
|
||||
for epoch in range(num_epochs):
|
||||
print(f"Epoch {epoch+1}/{num_epochs}")
|
||||
|
||||
# Entraînement sur les données d'entraînement
|
||||
os.system(train_command)
|
||||
|
||||
# Validation sur les données de validation
|
||||
os.system(f"./darknet detector map data/obj.data cfg/yolov3_custom_test.cfg backup/yolov3_custom_train_{epoch+1}.weights")
|
||||
|
||||
print("Entraînement terminé!")
|
||||
33
server-trainer/UsersIdentification-ModelTraining.py
Normal file
33
server-trainer/UsersIdentification-ModelTraining.py
Normal file
@@ -0,0 +1,33 @@
|
||||
import cv2
|
||||
import os
|
||||
import numpy as np
|
||||
import pickle
|
||||
|
||||
image_dir="server-trainer/images/avatars/"
|
||||
current_id=0
|
||||
label_ids={}
|
||||
x_train=[]
|
||||
y_labels=[]
|
||||
|
||||
for root, dirs, files in os.walk(image_dir):
|
||||
if len(files):
|
||||
label=root.split("/")[-1]
|
||||
for file in files:
|
||||
if file.endswith("jpg"):
|
||||
path=os.path.join(root, file)
|
||||
if not label in label_ids:
|
||||
label_ids[label]=current_id
|
||||
current_id+=1
|
||||
id_=label_ids[label]
|
||||
image=cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
||||
x_train.append(image)
|
||||
y_labels.append(id_)
|
||||
|
||||
with open("server-ia/data/modeles/camera_identification_user/labels.pickle", "wb") as f:
|
||||
pickle.dump(label_ids, f)
|
||||
|
||||
x_train=np.array(x_train)
|
||||
y_labels=np.array(y_labels)
|
||||
recognizer=cv2.face.LBPHFaceRecognizer_create()
|
||||
recognizer.train(x_train, y_labels)
|
||||
recognizer.save("server-ia/data/modeles/camera_identification_user/trainner.yml")
|
||||
82
server-trainer/dataset.py
Normal file
82
server-trainer/dataset.py
Normal file
@@ -0,0 +1,82 @@
|
||||
import numpy as np
|
||||
import cv2
|
||||
import multiprocessing
|
||||
import random
|
||||
# dataset pour train_panneau.py
|
||||
def bruit(image_orig):
|
||||
h, w, c = image_orig.shape
|
||||
n = np.random.randn(h, w, c) * random.randint(5, 30)
|
||||
return np.clip(image_orig + n, 0, 255).astype(np.uint8)
|
||||
|
||||
def change_gamma(image, alpha=1.0, beta=0.0):
|
||||
return np.clip(alpha * image + beta, 0, 255).astype(np.uint8)
|
||||
|
||||
def modif_img(img):
|
||||
h, w, c = img.shape
|
||||
|
||||
r_color = [np.random.randint(255), np.random.randint(255), np.random.randint(255)]
|
||||
img = np.where(img == [142, 142, 142], r_color, img).astype(np.uint8)
|
||||
|
||||
if np.random.randint(3):
|
||||
k_max = 3
|
||||
kernel_blur = np.random.randint(k_max) * 2 + 1
|
||||
img = cv2.GaussianBlur(img, (kernel_blur, kernel_blur), 0)
|
||||
|
||||
M = cv2.getRotationMatrix2D((int(w / 2), int(h / 2)), random.randint(-10, 10), 1)
|
||||
img = cv2.warpAffine(img, M, (w, h))
|
||||
|
||||
if np.random.randint(2):
|
||||
a = int(max(w, h) / 5) + 1
|
||||
pts1 = np.float32([[0, 0], [w, 0], [0, h], [w, h]])
|
||||
pts2 = np.float32([[0 + random.randint(-a, a), 0 + random.randint(-a, a)], [w - random.randint(-a, a), 0 + random.randint(-a, a)], [0 + random.randint(-a, a), h - random.randint(-a, a)], [w - random.randint(-a, a), h - random.randint(-a, a)]])
|
||||
M = cv2.getPerspectiveTransform(pts1,pts2)
|
||||
img = cv2.warpPerspective(img, M, (w, h))
|
||||
|
||||
if np.random.randint(2):
|
||||
r = random.randint(0, 5)
|
||||
h2 = int(h * 0.9)
|
||||
w2 = int(w * 0.9)
|
||||
if r == 0:
|
||||
img = img[0:w2, 0:h2]
|
||||
elif r == 1:
|
||||
img = img[w - w2:w, 0:h2]
|
||||
elif r == 2:
|
||||
img = img[0:w2, h - h2:h]
|
||||
elif r == 3:
|
||||
img = img[w - w2:w, h - h2:h]
|
||||
img = cv2.resize(img, (h, w))
|
||||
|
||||
if np.random.randint(2):
|
||||
r = random.randint(1, int(max(w, h) * 0.15))
|
||||
img = img[r:w - r, r:h - r]
|
||||
img = cv2.resize(img, (h, w))
|
||||
|
||||
if not np.random.randint(4):
|
||||
t = np.empty((h, w, c), dtype=np.float32)
|
||||
for i in range(h):
|
||||
for j in range(w):
|
||||
for k in range(c):
|
||||
t[i][j][k] = (i / h)
|
||||
M = cv2.getRotationMatrix2D((int(w / 2), int(h / 2)), np.random.randint(4) * 90, 1)
|
||||
t = cv2.warpAffine(t, M, (w, h))
|
||||
img = (cv2.multiply((img / 255).astype(np.float32), t) * 255).astype(np.uint8)
|
||||
|
||||
img = change_gamma(img, random.uniform(0.6, 1.0), -np.random.randint(50))
|
||||
|
||||
if not np.random.randint(4):
|
||||
p = (15 + np.random.randint(10)) / 100
|
||||
img = (img * p + 50 * (1 - p)).astype(np.uint8) + np.random.randint(100)
|
||||
|
||||
img = bruit(img)
|
||||
|
||||
return img
|
||||
|
||||
# NOT WORKING ERREUR
|
||||
def create_lot_img(image, nbr, nbr_thread=None):
|
||||
if nbr_thread is None:
|
||||
nbr_thread = multiprocessing.cpu_count()
|
||||
lot_original = np.repeat([image], nbr, axis=0)
|
||||
p = Pool(nbr_thread)
|
||||
lot_result = p.map(modif_img, lot_original)
|
||||
p.close()
|
||||
return lot_result
|
||||
85
server-trainer/genere_images_panneaux.py
Normal file
85
server-trainer/genere_images_panneaux.py
Normal file
@@ -0,0 +1,85 @@
|
||||
import tensorflow as tf
|
||||
from tensorflow.keras import layers, models
|
||||
import numpy as np
|
||||
from sklearn.utils import shuffle
|
||||
import os
|
||||
import cv2
|
||||
import dataset
|
||||
###GENERE DES IMAGES AVEC PANNEAUX DEPUIS UN MEDIA###
|
||||
# Tuto25[OpenCV] Lecture des panneaux de vitesse p.1 (houghcircles) 28min
|
||||
# Taille des images
|
||||
size = 42
|
||||
# Chemin vers le répertoire contenant les images de panneaux
|
||||
dir_images_panneaux = "server-trainer/images/road_sign_speed_trainers/panneaux"
|
||||
dir_images_genere_panneaux = "server-trainer/images/road_sign_speed_trainers/genere_panneaux"
|
||||
|
||||
# Fonction pour lire les images de panneaux à partir du répertoire spécifié
|
||||
def lire_images_panneaux(dir_images_panneaux, size=None):
|
||||
tab_panneau = []
|
||||
tab_image_panneau = []
|
||||
|
||||
# Vérifie si le répertoire existe
|
||||
if not os.path.exists(dir_images_panneaux):
|
||||
quit("Le repertoire d'image n'existe pas: {}".format(dir_images_panneaux))
|
||||
|
||||
# Liste tous les fichiers dans le répertoire
|
||||
files = os.listdir(dir_images_panneaux)
|
||||
|
||||
# Quitte si le répertoire est vide
|
||||
if files is None:
|
||||
quit("Le repertoire d'image est vide: {}".format(dir_images_panneaux))
|
||||
|
||||
# Parcours des fichiers dans le répertoire
|
||||
for file in sorted(files):
|
||||
# Vérifie si le fichier est un fichier PNG
|
||||
if file.endswith("png"):
|
||||
# Ajoute le nom du fichier (sans l'extension) à tab_panneau
|
||||
tab_panneau.append(file.split(".")[0])
|
||||
|
||||
# Lit l'image et redimensionne si une taille est spécifiée
|
||||
image = cv2.imread(dir_images_panneaux + "/" + file)
|
||||
if size is not None:
|
||||
image = cv2.resize(image, (size, size), cv2.INTER_LANCZOS4)
|
||||
tab_image_panneau.append(image)
|
||||
|
||||
return tab_panneau, tab_image_panneau
|
||||
|
||||
# Appel de la fonction pour lire les images de panneaux
|
||||
tab_panneau, tab_image_panneau = lire_images_panneaux(dir_images_panneaux, size)
|
||||
|
||||
# Initialisation des tableaux pour les images et les labels
|
||||
tab_images = np.array([]).reshape(0, size, size, 3)
|
||||
tab_labels = []
|
||||
|
||||
# Génération des données d'entraînement
|
||||
id = 0
|
||||
for image in tab_image_panneau:
|
||||
lot = []
|
||||
for _ in range(100):
|
||||
lot.append(dataset.modif_img(image))
|
||||
lot = np.array(lot)
|
||||
tab_images = np.concatenate([tab_images, lot])
|
||||
tab_labels = np.concatenate([tab_labels, np.full(len(lot), id)])
|
||||
id += 1
|
||||
|
||||
# Conversion des tableaux en type approprié et normalisation des images
|
||||
tab_panneau = np.array(tab_panneau)
|
||||
tab_images = np.array(tab_images, dtype=np.float32) / 255
|
||||
tab_labels = np.array(tab_labels).reshape([-1, 1])
|
||||
|
||||
# Mélange des données
|
||||
tab_images, tab_labels = shuffle(tab_images, tab_labels)
|
||||
|
||||
# Boucle pour sauvegarder les images générées dans le répertoire de sortie
|
||||
for i in range(len(tab_images)):
|
||||
# Générer un nom de fichier unique en fonction de l'ID et du nom du panneau
|
||||
file_name = "{:d}_{}.png".format(i, tab_panneau[int(tab_labels[i])])
|
||||
# Enregistrer l'image dans le répertoire de sortie
|
||||
cv2.imwrite(os.path.join(dir_images_genere_panneaux, file_name), tab_images[i] * 255.0) # Retour à l'échelle 0-255
|
||||
|
||||
# Affichage des images avec leur label
|
||||
for i in range(len(tab_images)):
|
||||
cv2.imshow("panneau", tab_images[i])
|
||||
print("label", tab_labels[i], "panneau", tab_panneau[int(tab_labels[i])])
|
||||
if cv2.waitKey() & 0xFF == ord('q'):
|
||||
quit()
|
||||
39
server-trainer/genere_images_sans_panneaux.py
Normal file
39
server-trainer/genere_images_sans_panneaux.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
import random
|
||||
import os
|
||||
###GENERE DES IMAGES SANS PANNEAUX DEPUIS UN MEDIA###
|
||||
#YT:Tuto25[Tensorflow2] Lecture des panneaux de vitesse p.2 - 4min30
|
||||
|
||||
size=42
|
||||
video="server-trainer/videos/autoroute.mp4"
|
||||
dir_images_genere_sans_panneaux="server-trainer/images/road_sign_speed_trainers/genere_sans_panneaux"
|
||||
|
||||
if not os.path.isdir(dir_images_genere_sans_panneaux):
|
||||
os.mkdir(dir_images_genere_sans_panneaux)
|
||||
|
||||
if not os.path.exists(video):
|
||||
print("Vidéo non présente:", video)
|
||||
quit()
|
||||
|
||||
cap=cv2.VideoCapture(video)
|
||||
|
||||
id=0
|
||||
nbr_image=1500
|
||||
|
||||
nbr_image_par_frame=int(1500/cap.get(cv2.CAP_PROP_FRAME_COUNT))+1
|
||||
|
||||
while True:
|
||||
ret, frame=cap.read()
|
||||
if ret is False:
|
||||
quit()
|
||||
h, w, c=frame.shape
|
||||
|
||||
for cpt in range(nbr_image_par_frame):
|
||||
x=random.randint(0, w-size)
|
||||
y=random.randint(0, h-size)
|
||||
img=frame[y:y+size, x:x+size]
|
||||
cv2.imwrite(dir_images_genere_sans_panneaux+"/{:d}.png".format(id), img)
|
||||
id+=1
|
||||
if id==nbr_image:
|
||||
quit()
|
||||
Reference in New Issue
Block a user