import cv2 import os import numpy as np import pickle image_dir="server-trainer/images/avatars/" current_id=0 label_ids={} x_train=[] y_labels=[] for root, dirs, files in os.walk(image_dir): if len(files): label=root.split("/")[-1] for file in files: if file.endswith("jpg"): path=os.path.join(root, file) if not label in label_ids: label_ids[label]=current_id current_id+=1 id_=label_ids[label] image=cv2.imread(path, cv2.IMREAD_GRAYSCALE) x_train.append(image) y_labels.append(id_) with open("server-ia/data/modeles/camera_identification_user/labels.pickle", "wb") as f: pickle.dump(label_ids, f) x_train=np.array(x_train) y_labels=np.array(y_labels) recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.train(x_train, y_labels) recognizer.save("server-ia/data/modeles/camera_identification_user/trainner.yml")