93 lines
2.8 KiB
Python
93 lines
2.8 KiB
Python
import cv2
|
|
import argparse
|
|
import numpy as np
|
|
|
|
ap = argparse.ArgumentParser()
|
|
ap.add_argument('-v', '--video', required=True,
|
|
help='path to input video file or "cam" for webcam')
|
|
ap.add_argument('-c', '--config', required=True,
|
|
help='path to yolo config file')
|
|
ap.add_argument('-w', '--weights', required=True,
|
|
help='path to yolo pre-trained weights')
|
|
ap.add_argument('-cl', '--classes', required=True,
|
|
help='path to text file containing class names')
|
|
args = ap.parse_args()
|
|
|
|
def get_output_layers(net):
|
|
layer_names = net.getLayerNames()
|
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
return output_layers
|
|
|
|
def draw_prediction(img, class_id, confidence, x, y, x_plus_w, y_plus_h):
|
|
label = str(classes[class_id])
|
|
color = COLORS[class_id]
|
|
cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2)
|
|
cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
|
|
|
classes = None
|
|
with open(args.classes, 'r') as f:
|
|
classes = [line.strip() for line in f.readlines()]
|
|
|
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
|
|
|
|
net = cv2.dnn.readNet(args.weights, args.config)
|
|
|
|
# If webcam is chosen, use camera capture
|
|
if args.video == 'cam':
|
|
cap = cv2.VideoCapture(0)
|
|
else:
|
|
cap = cv2.VideoCapture(args.video)
|
|
|
|
while True:
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
break
|
|
|
|
Width = frame.shape[1]
|
|
Height = frame.shape[0]
|
|
scale = 0.00392
|
|
|
|
blob = cv2.dnn.blobFromImage(frame, scale, (416, 416), (0, 0, 0), True, crop=False)
|
|
net.setInput(blob)
|
|
outs = net.forward(get_output_layers(net))
|
|
|
|
class_ids = []
|
|
confidences = []
|
|
boxes = []
|
|
conf_threshold = 0.5
|
|
nms_threshold = 0.4
|
|
|
|
for out in outs:
|
|
for detection in out:
|
|
scores = detection[5:]
|
|
class_id = np.argmax(scores)
|
|
confidence = scores[class_id]
|
|
if confidence > 0.5:
|
|
center_x = int(detection[0] * Width)
|
|
center_y = int(detection[1] * Height)
|
|
w = int(detection[2] * Width)
|
|
h = int(detection[3] * Height)
|
|
x = center_x - w / 2
|
|
y = center_y - h / 2
|
|
class_ids.append(class_id)
|
|
confidences.append(float(confidence))
|
|
boxes.append([x, y, w, h])
|
|
|
|
indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold, nms_threshold)
|
|
|
|
for i in indices:
|
|
i = i[0]
|
|
box = boxes[i]
|
|
x = box[0]
|
|
y = box[1]
|
|
w = box[2]
|
|
h = box[3]
|
|
draw_prediction(frame, class_ids[i], confidences[i], round(x), round(y), round(x + w), round(y + h))
|
|
|
|
cv2.imshow("object detection", frame)
|
|
if cv2.waitKey(1) & 0xFF == ord('q'):
|
|
break
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows()
|